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Abstract

Invasive alien species are among the main drivers of the ongoing sixth mass
extinction wave, especially affecting island populations. Although the Caribbean is
well-known for its high species richness and endemism, also for reptiles, equally
important is the regional contribution of non-native species to island biodiversity.
The Lesser Antilles encompass high genetic diversity in Iguana, though most
native populations either have gone extinct or are declining following competitive
hybridization with invasive non-native green iguanas. Here, we assessed non-native
presence in two poorly-studied native melanistic Iguana iguana populations using
available genetic tools and explored utilizing size-dependent body measurements to
discriminate between native and non-native iguanas. Genetic samples from Saba
and Montserrat were genotyped across 17 microsatellite loci with STRUCTURE,
and multivariate analyses indicating non-native iguana presence only on Saba. This
was corroborated by mtDNA and nDNA sequences, highlighting a non-native ori-
gin in Central America and the ABC islands. We identified preliminary evidence
suggestive of hybridization. Morphological variation among size-dependent charac-
teristics showed that non-native iguanas have significantly larger subtympanic
plates than native iguanas. Non-native individuals also differed in scalation and
coloration patterns. Overall, our findings demonstrate the need for continuous mon-
itoring of non-native iguanas within remaining native Iguana populations in the
Lesser Antilles, as those not directly threatened by non-native green iguanas are
restricted to only 8.7% of the historic range. Although genetic data allow for the
identification of non-native or hybrid iguana presence, this field-to-lab workflow is
time-consuming. Rapid in-situ identification of non-native individuals is crucial for
conservation management. In addition to patterns of scalation and coloration, we
have highlighted the utility of size-dependent variables for rapid diagnosis. We
urge regional partners to build morphometric databases for native Iguana popula-
tions allowing the quick detection of future incursions of non-native green iguanas
and the rapid implementation of effective countermeasures during the early phase
of invasion.

Introduction

Invasive alien species (IAS) are among the most prominent
threats to global biodiversity (Bax et al., 2003; Butchart
et al., 2010), contributing to what has been named the sixth
mass extinction event (McGeoch et al., 2010; Bellard,

Cassey, & Blackburn, 2016). Although natural introductions
(e.g., following hurricanes) of non-native species have
shaped current patterns of species diversity and biogeography
(Heinicke, Duellman, & Hedges, 2007; Fonte, Mayer, &
L€otters, 2019; Kennedy et al., 2020), anthropogenically-
mediated introductions continue to increase in frequency and
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are redefining biogeographic patterns (Capinha et al., 2015).
IAS can impact native species through a range of mecha-
nisms, for example, direct predation, competition, replace-
ment, and hybridization, and their various combinations
(Reaser et al., 2007).

Isolated insular populations and species are especially vul-
nerable to IAS (Tershy et al., 2015), including those of the
Greater Caribbean region (Gleditsch et al., 2022). Within this
region, human impact, especially in terms of high inter-
island transport and poor biosecurity, drives the high occur-
rence of non-native species, especially reptiles (Cox
et al., 2022; Jesse et al., 2022). In addition, hurricane events
can also translocate invasive alien reptile species to other
islands (Censky, Hodge, & Dudley, 1998), as can recovery
aid campaigns triggered by natural disasters (van den Burg
et al., 2021a).

Within the Greater Caribbean region, insular iguana species
are being impacted by recently-arrived non-native iguanas
(Knapp et al., 2021). While on Little Cayman the intergeneric
hybridization of the native Cyclura nubila caymanensis with
non-native Iguana iguana is alarming (Moss et al., 2017), the
main invasive iguana hotspot is in the Lesser Antilles (Fig. 1).
There, especially Iguana delicatissima has been impacted by
non-native iguanas, which are considered the major factor
behind its range-wide decline and its recent assignment as Criti-
cally Endangered (van den Burg, Breuil, & Knapp, 2018a).
Non-native iguanas are currently competitively hybridizing and
outcompeting native I. delicatissima populations throughout
the French West Indies (Vuillaume et al., 2015; Angin, 2017),
on Anguilla (Pounder et al., 2020), on St. Eustatius (van den
Burg et al., 2018b), and most recently also in the Common-
wealth of Dominica (van den Burg, Brisbane, & Knapp, 2020).
Besides I. delicatissima, several native populations of the I.
iguana complex also occur on Lesser Antillean islands (Ste-
phen et al., 2013; Iguana Taxonomy Working Group
et al., 2016, 2022). Although these populations have received
less attention, research and conservation interest in these native
gene pools has increased recently.

Iguanas on St. Lucia, St. Vincent, and the Grenadines
were recently described as subspecies and later as the species
Iguana insularis, with two subspecies (Breuil et al., 2019,
2022). The IUCN-SSC Iguana Specialist Group’s Taxonomy
Working Group (ITWG) currently does not recognize the
proposed full species status, retaining the subspecies status
for Iguana iguana insularis and I. i. sanctaluciae as origi-
nally described by Breuil et al. (2019) until such time at
which further evidence may be published (Iguana Taxonomy
Working Group et al., 2022). Among these southern Lesser
Antillean islands, non-native iguanas are also established on
or have hybridized with native iguanas, on St. Lucia, St.
Vincent, and several Grenadine islands (Fig. 1; Morton, 2008;
Breuil et al., 2019, 2022). For Grenada, some evidence sug-
gests non-native presence, but no samples have been ana-
lyzed so far to confirm their presence and potential
hybridization (Breuil et al., 2019).

Iguana melanoderma was described by Breuil
et al. (2020) for the Lesser Antillean iguana populations of
Saba and Montserrat, while the ITWG still considers these

as distinct subpopulations of Iguana iguana iguana, until
further evidence calls for a revision may become available
(Iguana Taxonomy Working Group et al., 2022). Here, we
acknowledge that the taxonomic position of these melanistic
populations is under discussion and for now choose to fol-
low the proposed ITWG taxonomy. Breuil et al. (2020)
found no evidence for the presence of non-native iguanas on
Saba and Montserrat based on morphological characters and
limited microsatellite and mtDNA sequence data. However,
more extensive yet preliminary data collected during 2021
suggested that a few non-native iguanas might have already
been or since arrived on Saba (van den Burg, Madden, &
Debrot, 2022). Reports of an apparent sudden increase in
iguana numbers on Montserrat (pers. comm. Ernestine Cor-
bett; pers. comm. Stephen Mendes) also give reason for con-
cern about the possible presence and spread of non-native
iguanas with higher reproductive potential.

Non-native presence and potential hybridization with native
Iguana populations are mostly assessed using microsatellite
and sequence data in conjunction with genetic databases for
native populations (e.g., Vuillaume et al., 2015; van den Burg
et al., 2018b, 2021b; Pounder et al., 2020), most notably for
hatchling and juvenile iguanas given their high morphological
similarity between island populations. Although some compari-
sons on scale and coloration patterns can also be used
(Breuil, 2013), the data underlying this reference dataset only
cover a small part of the Iguana iguana complex and numerous
characteristics are not diagnostically informative given the
absence of quantitative data and lack of definitions for qualita-
tive categories. These morphological characteristics are mostly
useful to identify non-native I. iguana and I. iguana x I. delica-
tissima hybrids within native I. delicatissima populations (Vuil-
laume et al., 2015; van den Burg et al., 2018b, 2020; Pounder
et al., 2020). However, correct diagnostic characterization of
hybrid status using these patterns is not guaranteed (Vuillaume
et al., 2015). Hence, non-native and hybrid identification within
native I. iguana populations is more difficult, and additional
characteristics should be explored to strengthen rapid in-situ
field identification.

Here, based on preliminary data from Saba and Montser-
rat, we aimed to assess the presence of non-native iguanas
on two of the last Lesser Antillean islands that are still home
to native Iguana populations. For this, we implemented
genetic reference tools representing most of the extended
native range of Iguana iguana (spanning tropical South and
Central America). We also explored the use of additional
variables to identify non-native and hybrid iguanas by asses-
sing size-corrected body measurements for native and non-
native iguanas.

Materials and methods

Fieldwork was conducted during August–September 2021
and July–December 2021 on Saba and Montserrat, respec-
tively. We captured iguanas by means of lasso and pole, by
hand, or using cage traps. We then collected photographic
images of the entire body as well as all sides of the head,
and collected a genetic sample, either blood (ventrally from
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the caudal vein) or tissue (1 cm clip from largest dorsal
spine), from the captured animals. On both Saba (58) and
Montserrat (80), all caught iguanas were used in genetic ana-
lyses (Fig. 2a,b). Morphology was used to pre-identify
potential non-native iguanas using the following characteris-
tics: body coloration, the presence/absence of a melanistic
patch between the eye and subtympanic plate, and the pres-
ence/absence of enlarged nasal scales (Breuil et al., 2020).

On Saba, sampling was done opportunistically during a
population assessment (van den Burg et al., 2022), where
we also collected the following morphometric measurements:
snout-vent length, tail length, upper frontleg length, lower
frontleg length, upper hindleg length, lower hindleg length,
length of 4th toe, head width, head length, snout length, eye
length, mouth length, head depth, tympanum height, tympa-
num width, subtympanic plate height, subtympanic plate
width, mid-body spine length, and the presence or absence

of an enlarged nasal scale (‘horn’) (for methodology see
Supplementary material); lateral facial measures were taken
from the right side. All variables were measured given the
knowledge of their SVL dependence and absence of allome-
try across the I. iguana species complex; topics that will be
addressed in a separate manuscript (van den Burg et al. in
prep.). All measurements were taken by the first author.
Although melanism was defined as one of the main charac-
teristics of these populations (Breuil et al., 2020), a subse-
quent study on the Saba population found that very few
animals were completely melanistic (van den Burg
et al., 2022). Therefore, knowledge about native body color-
ation is still in need of further assessment. Consequently, for
this assessment, we sufficed by recording only the presence
of a melanistic patch between the eye and tympanum in
adult iguanas as the key distinguishing color characteristic
(Gerber, 1999; Breuil et al., 2020).
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Figure 1 Historic (a) and current (b) status of Iguana sp. populations within the Caribbean Lesser Antilles, including ongoing hybridization

and extirpated populations. Taxonomy follows the Iguana Taxonomy Working Group Supplement 2022. Only the Grenadines islands with cur-

rent hybrid populations are individually mentioned. Some areas on islands identified as having ‘ongoing hybridization’ still have isolated native

populations
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Microsatellite laboratory procedures at Labofarm-
GenIndexe (France) were used to amplify 17 microsatellite
loci (see van den Burg et al., 2021b), using identical meth-
odologies as presented in Valette et al. (2013). Subsequently,
PCR product analyses and allele scoring were performed fol-
lowing van den Burg et al. (2021b) and using sample
IGD277 to standardize allele sizes.

A subset of five samples per island was then processed at the
University of Amsterdam where DNA isolation and PCR meth-
odology were performed to amplify the NADH dehydrogenase
subunit 4 (ND4) and the MutL homolog 3 (MLH3) using PCR,
following van den Burg et al. (2018b) and Malone, Reynoso, &
Buckley (2017), respectively. These samples were selected
based on microsatellite and morphology results being sugges-
tive of non-native origin. Successful amplification was con-
firmed using gel electrophoresis, whereafter resulting PCR
fragments were both reverse and forward-sequenced. Chro-
matograms were assessed, curated, and aligned using Geneious
Prime (2021.1.1). Sequences were uploaded to GenBank
(OQ556117-OQ556120), and the microsatellite data were
added to the IguanaBase database (van den Burg et al., 2021c).

Data analyses

Genetic analyses using microsatellites were only performed on
samples with <20% missing data. These samples were com-
binedly analyzed with those from IguanaBase (van den Burg
et al., 2021c) to assess the extent of clustering with samples
previously collected on Saba and Montserrat, as well as to iden-
tify the potential presence of non-native iguanas and their geo-
graphic origin. First, we assessed non-native iguana presence

through the implementation of the predict.dapc (DAPC) func-
tion from the adegenet package (Jombart, 2008) within the R
environment (R Core Team, 2022). This function assigns indi-
viduals to populations using a provided reference dataset, in
this case IguanaBase. We performed multiple analyses on the
reference data that differed in PCA axes inclusion in order to
test assignment robustness. Thereafter, we performed an addi-
tional assignment analysis following van den Burg et al.
(2021c) by running STRUCTURE (Pritchard, Stephens, &
Donnelly, 2000) within GENODIVE (Meirmans, 2020) using
identical settings for K (ranging from 1 to 8) and prepared sub-
sequent visualizations using bar plots through Structure Har-
vester (Evanno, Regnaut, & Goudet, 2005; Earl & von
Holdt, 2012) and distruct (Rosenberg, 2004). Given the large
number of samples collected in 2021 compared to population
sample sizes in IguanaBase, we ran STRUCTURE using half of
the Saba and Montserrat samples, specifically including sam-
ples that were (partially) assigned as non-native following the
DAPC analysis. The allele ranges for all loci were then visually
compared with those published in IguanaBase (van den Burg
et al., 2021c), especially for those loci so far regarded as fixed
in the Saba and Montserrat populations; L3, L8, L13, L16, L17,
L24. Lastly, relative allelic richness was calculated for Saba
and Montserrat separately using the GenPopReport package
(Adamack & Gruber, 2014). Basemaps were created in QGIS
3.8.0 Zanzibar (QGIS.org, 2022) and finalized in Adobe Illus-
trator 25.3.1.

Mitochondrial (ND4) and nuclear (MLH3) sequence data
were compared with data from the native Iguana iguana
range available on GenBank and from a large unpublished
dataset (van den Burg et al. unpublished data). For both

(a) (b)

Figure 2 Maps of Saba (a) and Montserrat (b) showing locations of collected genetic samples, and the distribution of non-native iguanas on

Saba. Contour lines are at 50-meter intervals
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markers, the dataset included native samples from Saba and
Montserrat, collected prior to 2010. Pairwise differences were
used to identify available sequences with the highest nucleo-
tide similarity and their geographic origin.

Morphological analyses were done on native iguanas by
regressing individual length variables against SVL to assess
size-dependence, whereafter we compared residuals of adults
(>20 cm SVL) between sexes to assess potential sex-linked dif-
ferences using t-tests. Analyses of these variables across the
Iguana iguana complex showed their SVL dependence, with an
absence of allometry (van den Burg et al. in prep). Variables
were initially checked for normality and equality of variance.
We repeated SVL regressions for a dataset including non-native
iguanas and used the resulting residuals to assess differences
between sex and species status. These were tested using a two-
way ANOVA or Kruskal-Wallis test depending on the results
from the homogeneity of variance and normality tests. Data
handling and analyses were performed in RStudio Version
1.2.5033 (RStudio Team, 2019). Morphometric data are avail-
able through figshare (van den Burg et al., 2023).

Results

Genetic results

Microsatellite data

Samples with <20% missing data included 57 individuals
from Saba and 76 from Montserrat. DAPC posterior scores

clustered all except four samples within the genetic morpho-
space from previously collected Saba and Montserrat sam-
ples, and minimally with I. i iguana (Fig. 3). Specimen
SAB58 was assigned to I. i rhinolopha, while population
assignment of the other three Saba specimens differed
depending on the number of included PCA axes. Affinities
for the latter three specimens were as follows: SAB04: I. aff.
iguana Clade I; SAB57: I. i iguana; SAB08: mixed partial
assignments to I. i rhinolopha, I. aff. iguana Clade I, I. i
iguana, as well as Saba and Montserrat. All except three
specimens from Montserrat were consistently assigned to the
IguanaBase group of Saba and Montserrat; Mont33, Mont39,
and Mont40 were also assigned to I. i. iguana.

Results from STRUCTURE analyses for K = 6 (Figs. 4a,
b), based on taxonomic and geographic clusters, indicated
that all 2021-captured individuals had assignment scores of
>0.90 for the cluster with melanistic I. iguana from Saba
and Montserrat, except for four samples from Saba and three
from Montserrat (marked with asterisk in Fig. 4b). For Saba,
specimen SAB58 was assigned to I. i. rhinolopha (0.92),
while the other three specimens indicated mixed origins for
I. i. rhinolopha (SAB08, 0.42; SAB57, 0.29), I. i. rhinolo-
pha, and I. aff. iguana Clade I (SAB04, 0.13, 0.43). For
Montserrat, the three specimens (Mont33, 0.35; Mont39,
0.22; Mont40, 0.10) had partial assignments to I. i. iguana
and to several reference samples from Montserrat collected
before 2021.

Novel haplotypes for these populations were found across
15 loci (Fig. S1). Compared to previously genotyped

Figure 3 Discriminant analysis of principal components (PC) scatterplot representing 17 microsatellite loci from reference IguanaBase indi-

viduals (colored circles) and assigned 2021-sampled individuals (57 iguanas from Saba and 76 from Montserrat; black triangles) in the PC

morphospace
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samples, 23 new haplotypes were identified from Saba, and
five from Montserrat of the latter of which two overlapped.
For 13 loci these new haplotypes fell outside the known size
ranges for the Saba and Montserrat populations.

On Saba, mean allelic richness was 2.57 for all 57 geno-
typed samples, 1.67 when excluding the four identified non-
native iguanas, and 1.82 when combining the 53 native sam-
ples with six Saba samples from IguanaBase. For the 76
2021-sampled iguanas from Montserrat, mean allelic richness
was 2.33, and 2.50 including 14 Montserrat IguanaBase
samples.

Sequence data

Generated ND4 (789 bp) and MLH3 (778 bp) sequences all
matched 100% to published and unpublished available
sequences from the native I. iguana range. For ND4, all five
Montserrat specimens and Saba specimen SAB02 had the
Caribbean CAR2 haplotype (GenBank accession HM352505,
Stephen et al., 2013). From Saba, SAB08, SAB57, and
SAB58 had the mtDNA Central-American haplotype CA4
(GenBank accession HM352508, Stephen et al., 2013), while
SAB04 had a haplotype only known from the ABC islands
(SA16; van den Burg et al. unpublished data).

For MLH3, both islands had one sample with unreadable
chromatogram data. The remaining four Montserrat speci-
mens, as well as SAB02, were homozygous for a haplotype
only found within I. i. iguana including a native pre-2021
sample from Saba (H18; van den Burg et al. unpublished
data). While SAB08 and SAB57 were heterozygous for H18
and, respectively, a haplotype known from El Salvador
(H16; van den Burg et al. unpublished data) and one known
only from Honduras (H15; van den Burg et al. unpublished
data). Finally, SAB58 was heterozygous for H15 and H16.

Morphology results

Considering all life stages of native iguanas, each measured
length variable was found to be size-dependent, see Table 1.

On Saba, differences in size-corrected residuals between
native female and male adult iguanas were significant for 11
of 16 tested variables (Table 1). Tail length could not be
tested given the high percentage of animals with a broken
tail. Considering differences in sex and native/non-native sta-
tus, ten length variables differed significantly between sex
but not native/non-native status, while subtympanic plate
height differed significantly for status but not sex (Table 1,
Figs 5 and 6).
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Figure 4 Genetic variation among 17 microsatellites for samples collected on Saba and Montserrat, and referenced to the Iguana iguana

complex following IguanaBase (van den Burg et al., 2021c). (a) Delta K and (b) STRUCTURE plots for K = 6, differentiating among five taxo-

nomic units, and pre- and post-2021-sampled individuals on Saba and Montserrat. Asterisks for Saba and Montserrat indicate samples

highlighted in the text: SAB04, 08, 57, 58, and Mont33, 39, 40.

Table 1 Morphometric analysis results for iguanas on Saba. R2-

values of snout-vent length regressions provided for native

iguanas, as well as results of two-sample t-tests for size-corrected

residual comparisons between the sexes. Significant t-test results

are indicated by an asterisk for P < 0.05. Non-native and native

iguana comparisons are addressed in footnotes

R2 t-value df P

Tail length 0.98

Upper frontleg length 0.96 �1.8988 39 0.065

Lower frontleg length 0.98 �3.756 39 0.0005638*

Upper hindleg length 0.98 �1.4096 39 0.1666

Lower hindleg length 0.98 �3.0723 39 0.003862*

Length of 4th toea 0.91 �2.7554 38 0.008951*

Head widtha 0.96 �2.5122 39 0.01625*

Head lengtha 0.95 �3.6412 39 0.0007873*

Snout lengtha 0.97 �2.3068 39 0.02647*

Eye length 0.94 �1.0546 39 0.2981

Mouth lengtha 0.97 �2.1523 39 0.03762*

Head deptha 0.94 �3.9221 39 0.0003454*

Tympanum heighta 0.88 �2.2588 35 0.03014*

Tympanum widtha 0.72 �1.7774 39 0.08332

Subtympanic plate heightb 0.92 �1.9112 39 0.06334

Subtympanic plate widtha 0.78 �3.1321 39 0.003286*

Mid-body spine lengtha 0.82 �5.9037 39 7.047 e-07*

a P < 0.05 for size-corrected comparison between sexes for non-

native and native split dataset.
b P < 0.05 for size-corrected comparison between status for non-

native and native split dataset.
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Nasal scalation assessments indicated that three iguanas
from Saba (SAB08, SAB57, and SAB58) had an enlarged
nasal scale (Fig. 6b,c), while such was absent in all iguanas
from Montserrat. The melanistic patch between the eye and

tympanum was absent in two iguanas (SAB57 + 58) but
faintly present in the two other iguanas (SAB04 + 08) from
Saba (Fig. 6c). On Montserrat, all iguanas had melanistic
scales within this patch; however, for Mont36 and Mont42,
this feature was very limited.

Discussion

The Lesser Antilles are plagued by the continuing presence
and spread of non-native Iguana iguana, which is a major
threat to the native insular Iguana populations. Here we
report on the assessment of non-native iguana presence on
Saba and Montserrat, two of the last remaining Lesser Antil-
lean islands previously believed to lack such invasive popu-
lations. Our integrated analysis of multiple genetic and
morphological data flags a recent incursion of non-native
iguanas on Saba, while we found no evidence of incursions
for Montserrat. In addition to scale and coloration patterns,
we highlight how morphometrics can aid the in-situ identifi-
cation of non-native and hybrid iguanas within native popu-
lations, especially in absence of rapid genetic analytic
techniques.

Passenger and cargo transport to Saba are mainly chan-
neled through St. Maarten, although private vessels often
have other origins. A recently reinstalled ferry service also
first passes St. Eustatius, which is home to a native I. delica-
tissima population. Additionally, a biweekly service delivers
cargo from Martin County (Florida, USA), where non-native
I. iguana is present (Meshaka, Butterfield, & Hauge, 2004;
iNaturalist, 2022). On St. Maarten, I. delicatissima has
already been extirpated, and currently, a large non-native I.
iguana population is present. Based on microsatellite, ND4,
and MLH3 data, our results identify that non-native iguanas
on Saba have their ultimate genetic origin in Central Amer-
ica, as well as in the ABC islands. However, given the high
inter-island connectivity with St. Maarten and since iguanas
from the same genetic backgrounds have been identified
there (van den Burg et al., 2018b), their more likely

p < 0.001
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Figure 5 Differences in the height of the subtympanic plate

between non-native and native iguanas on Saba. Data are SVL-

corrected residuals for genetically-assessed native adult iguanas,

>20 cm SVL.

Figure 6 Lateral view of three iguanas captured on Saba in 2021. (a) Native female (SAB09, 390 mm SVL) showing the absence of an

enlarged nasal scale and the presence of a melanistic patch between the eye and tympanum. (b) Non-native female (SAB58, 375 mm SVL)

showing the presence of enlarged nasal scale and the absence of a melanistic patch between the eye and tympanum. (c) Non-native male

(SAB08, 345 mm SVL) showing the presence of enlarged nasal scales and the faint presence of a melanistic patch between the eye and

tympanum.
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immediate origin is the large non-native iguana population in
St. Maarten. This is made even more likely considering that
two other non-native reptile species originating from St.
Maarten have recently been documented from Saba (van den
Burg, Hylkema, & Debrot, 2021d).

Among the Lesser Antillean islands, individual non-native
Iguana iguana have been traced back to several native range
origins, for example, mainland South America (Brazil), Cen-
tral America (e.g., Honduras and El Salvador), the ABC
islands, as well as Saba and St. Lucia (Vuillaume
et al., 2015; van den Burg et al., 2018b; Breuil et al., 2019;
Pounder et al., 2020). In addition, our work and that by
others show that individuals from Lesser Antillean native
Iguana populations must have also dispersed to other (neigh-
boring) islands (Vuillaume et al., 2015; van den Burg
et al., 2018b) in the past, be it either by natural or human-
mediated means. The demonstrated occurrence of Saba/Mont-
serrat haplotypes on St. Maarten (van den Burg
et al., 2018b) particularly shows the need to utilize multiple
genetic markers when trying to identify non-native iguanas
on Saba, as it cannot be excluded that introgressed Saban
iguanas could re-invade their original native population. Con-
sidering mtDNA data across non-native populations present
in the Greater (De Jes�us Villanueva et al., 2021) and Lesser
Antilles (the current study and references above), non-native
populations on Anguilla and St. Maarten stand out given
their high genetic diversity with three out of the four major
mtDNA clades of the I. iguana complex represented.

Although 26 novel alleles were identified across 15 loci
for Saba and Montserrat, these can represent either undiscov-
ered native variation or the presence of a non-native gene
pool. As relatively few samples were previously analyzed
from Saba and Montserrat it is not surprising that we identi-
fied novel alleles. Considering all loci examined, L20 stands
out as novel alleles for this locus were identified on both
islands, though we believe that their significance strongly
differs. Namely, the 182 allele in this study identified for the
L20 locus on Montserrat coincides closely with the previ-
ously documented diversity (see IguanaBase; van den Burg
et al., 2021c), which suggests that this constitutes a rare hap-
lotype. By contrast, the novel L20 alleles from Saba suggest
the presence of non-native iguanas given the large gap with
known native genetic diversity (but see Estoup, Jarne, &
Cornuet, 2002). Given the large pre- and post-2021 com-
bined sample sizes from Saba (n = 63) and Montserrat
(n = 90), the identification of novel alleles among fixed loci
can aid in assessing the presence of non-native iguanas on
the two islands. A total of four polymorphic loci (L3, L8,
L16, L17) were fixed across both island populations with the
exception of the four aberrant samples from Saba (Fig. 3
and Fig. S1) and provides additional evidence that non-
native iguanas are present on Saba but absent on Montserrat.
This was corroborated by our nDNA and mtDNA sequence
data.

Eventhough a complete overview is still lacking, scalation
and coloration patterns have already been found to be highly
variable throughout the I. iguana complex. We assessed the
presence of enlarged nasal scales and a melanistic facial

patch in both the Saba and Montserrat population, given pre-
vious morphological assessments of these populations (Breuil
et al., 2020; van den Burg et al., 2022). Among both popu-
lations, only three Saba animals had enlarged nasal scales
(horn) and were additionally assigned as non-native by
microsatellite and sequence data. In addition, these three
iguanas, as well as a fourth, which were all genetically iden-
tified as non-native, lacked a clear melanistic black patch
(though two had some faint partially black scales). On Mont-
serrat, several adult iguanas genetically assigned as native
had a patch with roughly 50% melanistic scales, while two
individuals only had 10–20% melanistic scales. In other
words, the melanistic patch of native animals from Montser-
rat was less pronounced than in native animals from Saba.
As we further found no genetic evidence of non-native pres-
ence on Montserrat, we suggest that a less-pronounced mela-
nistic patch is a native characteristic of the Montserrat
population. This is corroborated by Breuil et al. (2020), who
indicated that the Montserrat population was less melanistic.

In order to help distinguish non-native from native
iguanas in invaded populations, we also explored the use of
novel composite phenotypic tools in addition to scale and
color pattern characters (Breuil, 2013) and molecular data
(Stephen et al., 2013; Martin et al., 2015; Vuillaume
et al., 2015; van den Burg et al., 2018b, 2021b; Miller
et al., 2019; Pounder et al., 2020; Breuil et al., 2022; Mitch-
ell, Welch, & van den Burg, 2022). Size-dependent compari-
sons across 16 variables indicated that on Saba, genetically-
assigned non-native iguanas have larger subtympanic plate
scales than native iguanas (Figs 5 and 6). However, the diag-
nostic power and usage of these characteristics in distin-
guishing between non-native and native iguanas will depend
not only on sample size but on the geographic and taxo-
nomic origin and admixture of non-native individuals. In
short, we suggest that other SVL-dependent variable(s) might
be more useful to distinguish non-native animals with differ-
ent genetic origins and admixture from native Saba iguanas.
Therefore, additional analyses on intraspecific variation
among the measured variables in I. iguana should be useful
(and are ongoing; van den Burg et al. unpublished data).
This approach is likely most applicable to small insular
populations as opposed to widely-connected mainland popu-
lations given that the former tend to show less variation and
are especially vulnerable to non-native iguana incursions.
However, ex-situ, within the (illegal) pet trade (Nose-
worthy, 2017; van den Burg & Weissgold, 2020), these vari-
ables will remain of low value until a range-wide and high-
sampled dataset is present. Therefore, we suggest that size-
dependent variables will be of greatest value in distinguish-
ing between more distantly related species and that they
should especially be evaluated for use in conservation man-
agement for I. delicatissima.

While the initial presence of non-native species can be
expected to be highest around the incursion point, an initial
presence at locations more distant from the incursion point
can occur when biosecurity regulations are bypassed (Bris-
bane et al., 2021). Saba knows two principal incursion
points to the island. These are the Fort Bay harbor and the
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Juancho E. Yrausquin airport, situated on the southwest and
northeast sides of the island, respectively. Non-native iguanas
were mainly located at a site 0.4 km east from the harbor,
although one animal was found north of the settlement of
Windwardside (Fig. 2). How this latter individual reached
the center of the island is impossible to determine. We spec-
ulate that it might concern an intentionally and illegally
released pet (Jesse et al., 2016) arriving either via the airport
or the habor or that it might have arrived as an intra-island
stowaway that originally came in through the harbor. Occur-
rence of three of the four non-native iguanas documented for
this island near the harbor strongly suggests their arrival via
transport by boat or ship. In the case of the neighboring
island of St. Eustatius, the harbor also appears to be the
principal way of the incursion of non-native iguanas (Debrot,
Boman, & Madden, 2022), and other non-native reptiles
(Thibaudier et al., 2023).

Introgressive displacement has been identified as the main
threat to I. delicatissima (Vuillaume et al., 2015). Hybrid
and non-native iguanas are believed to be more territorially
aggressive and have higher reproductive fitness thanks to
larger clutch sizes compared with I. delicatissima (van
Wagensveld & van den Burg, 2018). Although data on the
clutch size from the Montserrat and Saba populations are
practically unavailable (Blankenship, 1990; van den Burg
et al., 2022), insular Iguana populations have generally been
found to have smaller clutch sizes than continental popula-
tions (e.g., Fitch & Henderson, 1977; van Marken Lichten-
belt & Albers, 1993; Bock et al., 2018), even though this is
believed to be partially climate dependent (e.g., Novosolov,
Raia, & Meiri, 2013). The available data suggest that the
Montserrat and Saba populations produce clutch sizes within
the lower range recorded for I. iguana, potentially allowing
reproductive and genetic swamping when non-native or
hybrid iguanas would reproduce within these island
populations.

Whether hybridization has occurred on Saba remains unre-
solved given our limited data, although preliminary data
could suggest it is taking place. The presence of non-native
iguanas on St. Maarten with a (partial) I. i. iguana origin
limits our ability to assess whether the I. i. iguana nDNA
from the three admixed iguanas of Saba represents native or
non-native DNA. Although SAB58 could potentially be the
maternal parent of SAB08 and 57 given mtDNA, nDNA
(MLH3), and body size, our microsatellite allele data rejects
this hypothesis. All data combined suggest that none of the
non-native iguanas had an identical pair of parents. The rela-
tively low number of non-native iguanas observed on Saba
implies that on-island hybridization might still be absent or
rare. However, the presence of two iguanas with faint mela-
nism with the facial patch might suggest that these animals
are hybrids. Additional fieldwork and genetic assessment are
needed to determine whether hybridization is still truly
absent.

Our results in any case show that there is a pressing need
for rapid action to completely remove non-native iguanas
from Saba, and that prospects for this are relatively good in
light of apparently lacking or only limited hybridization.

However, only immediate action can result in the removal of
non-native iguanas before they start interbreeding (Debrot
et al., 2022). Failure to act decisively at an early stage of
the invasion process elsewhere has led to a strong growth of
invasive iguana populations, and serious existential threats to
or even extinction of the original native iguana populations,
for example, on Grand Cayman (Rivera-Mil�an & Haakons-
son, 2020) and in the French West Indies (Angin, 2017).
Given this critical situation, the Saba subpopulation has
recently been assessed as Critically Endangered following
the IUCN Red List guidelines (van den Burg &
Debrot, 2022).

The situation on Montserrat warrants further investigation,
both into native population baseline numbers and to further
corroborate the absence of non-native iguanas. The reports
of a sudden, unexplained increase in iguana numbers there
might be explained by other factors than invading non-
natives, for example, observation bias or new agricultural
expansions, techniques or crops. Unfortunately, no compara-
tive data on past population numbers and distribution on
Montserrat exist. The situation and potential factors explain-
ing reported population increases should be followed up fur-
ther with a view to pre-empt or mitigate a potential shift of
public opinion against their largest native reptile. Especially
a possible attempt to regulate iguana numbers on Montserrat
should be preceded by further genetic testing, a thorough
population estimate and better knowledge of the distribution
across the island. Stringent biosecurity measures should be
implemented on Montserrat’s entry points to prevent non-
native iguanas to enter given their widespread occurrence in
the region (Knapp et al., 2021). This would be especially
important if it holds true that the island might still be the
only Lesser Antillean main island without non-native
iguanas. More extensive size-dependent morphometric data
collection from the native population will additionally be
essential to further help discern differences with non-native
iguanas, which can help to rapidly identify and cull non-
native and or hybrid iguanas.

We conclude by pointing out that our findings illustrate
the need for continuous monitoring of non-native iguanas
within the remaining native Iguana populations in the Lesser
Antilles. Although genetic data from across the native
Iguana range currently allows the identification of non-native
or hybrid presence, this field-to-lab workflow is often exces-
sively time-consuming. At present, genetic assessment
requires the shipment of samples and involves delays due to
the required permitting processes (e.g., CITES permits).
Improved in-situ identification screening to rapidly distin-
guish non-native from native individuals is urgently needed.
Here, in addition to scale and coloration patterns, we show
that size-dependent morphological variables can also be uti-
lized for rapid screening purposes. We urge our regional
partners to build morphometric databases for native Iguana
populations as soon as possible that can help to rapidly dis-
tinguish non-native iguanas for culling. Even if biosecurity is
eventually improved, incursions will from time to time con-
tinue to take place and the need to be able to rapidly distin-
guish non-native iguanas for culling will remain important.
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Supporting information

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Figure S1. Allele variation across 17 microsatellites
among six taxonomic and conservation units and the 2021-
sampled individuals from Saba and Montserrat. Allele sizes
denoted by the color gray have only been observed in hybrid
specimens across different populations.
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